

The Joint Effort seeks to protect watershed processes potentially impacted by how stormwater runoff is managed once project is built

Post-Construction Stormwater Requirements

Today's Presentation

- Draft Post-Construction Requirements
- Key Features:
 - ✓ LID Standards
 - ✓ Stormwater Control Plan
 - ✓ Adjustments to Requirements
- Focus on Runoff Retention
- Next Steps

■ ≥ 2,500 ft² Site Design / Runoff Reduction

■ ≥ 5,000 ft² Water Quality Treatment

■ ≥ 15,000 ft² Runoff Retention

■ ≥ 22,500 ft² Peak Management

≥ 2,500 ft² Site Design / Runoff Reduction

Use following where feasible:

- Prevent disturbance of creeks
- Minimize compaction of native soils
- Limit clearing and grading of native vegetation
- Minimize impervious surfaces
- Direct runoff

- 5,000 15,000 ft² Water Quality Treatment
- 1. LID Treatment Systems (retain) 85th
 Percentile 24-hr event
- 2. Biofiltration Treatment System
- 3. Flow-through Treatment (SUSMP)

≥ 15,000 ft² Runoff Retention

Depending on Watershed Management Zone:

Retain 85th or 95th Percentile via infiltration or storage

≥ 22,500 ft² Peak Management

Match Post-Project to Pre-Project peak flows for the 2- through 100-year storm events

- Site Assessment
- Site Design
- Site Runoff Reduction
- Structural Measures

Site Assessment Measures – identify opportunities and constraints

Document:

- Site topography
- Hydrologic features
- Depth to seasonal high groundwater
- Depth to an impervious layer such as bedrock
- Presence of unique geology (e.g., karst)
- Geotechnical hazards
- Documented soil and/or groundwater contamination
- Soil types and hydrologic soil groups
- Vegetative cover/trees

Site Design Measures – optimize the use of LID site design measures, as feasible and appropriate at the project site:

- Define development envelope, protected areas, areas most suitable for development, areas to be left undisturbed
- Conserve natural areas, existing trees, other vegetation, and soils
- Concentrate development on portions of the site with less permeable soils, preserve areas that can promote infiltration

Site Runoff Reduction Measures

- Reduce amount of runoff for which retention and treatment is required
- Direct runoff from impervious surfaces to undisturbed or natural landscaped areas
- Any remaining volume must be addressed using Structural Stormwater Control Measures

Structural Stormwater Control Measures

- Priorities:
- Bioretention
- Rainwater harvesting and reuse
- Pervious Pavement
- Vegetated Roofs
- Soil Amendments

Where LID not feasible, use conventional designs

- Infiltration (Retention) Basins
- Infiltration Trenches
- Dry Wells
- Constructed Wetlands
- Wet Ponds

Stormwater Control Plan

- Project name, type, application number...
- Total project site area
- Total new and/or replaced impervious surface area
- Site assessment summary
- Summary of Runoff Reduction Measures and Structural Stormwater Control Measures
- Supporting calculations used to meet Water Quality
 Treatment and Runoff Retention Requirements
- Documentation of infeasibility where on-site compliance can't be achieved

Watershed Management Zones

WMZ	Percent Urban
	Area
1	62.6
2	8.8
3	2.5
4	13.6
5	2.6
6	2.2
7	0.1
8	0.1
9	6.3
10	1.0
Water	0.2
	100%

Adjustments and Off-Ramps

Redevelopment

Special Circumstances

Alternative Compliance

Redevelopment Projects

Mitigation Required for Less than Full Area

Replaced Impervious Surface X 0.5

Special Circumstances

Highly Altered Channels

Intermediate Flow Control Facilities

Historic Lake or Wetland

Alternative Compliance

Technical Infeasibility

Urban Sustainability Area

Watershed or Regional Plan

Focus on Retention

Would the 95th Percentile Criteria Work in the Central Coast Development Environment?

Grocery Outlet

A Redevelopment Project on Main St. Watsonville

- 2.95 Acre Site
- 89% Impervious (11% Landscaping BMPs)
- Located in WMZ 1
- Retain 95th Percentile event (1.23")
- Compliance must be achieved by infiltration

POST CONSTRUCTION CONDITIONS:

SURFACES

PLANTERS = 14,470 SF (0.33 AC) ROOFS = 35,710 SF (0.82 AC) PAVEMENT = 78,190 SF (1.80 AC) TOTAL BASIN = 128,370 SF (2.95 AC)

Planters
Designed as
Bioswales

Does the Current Design Meet the 95th Percentile Requirement?

Site data	SF	Ac
Total Site	128,370	2.95
Infiltration BMP	14,470	0.33
Roofs	35,710	0.82
Pavement	78,190	1.79

Soil Infiltration Rates (in/hr)

Α	up to 8
В	0.5- 1
-c	0.17-0.27
D	0.02- 0.1

Middle of each range used for calculations

	Acre Feet	Cubic Feet
95th% Treatment Volume	0.25	10,692

Yes For A and B Soils

No for C & D Soils

	Soil Type			
	Α	В	C	D
Area (Acres) Required for Infiltration in < 72 hrs	0.20	0.20	0.46	2.05
Enough pervious space on site to make infiltration feasible?	Yes	Yes	No	No
Infiltration BMP as a % Of Total Site	7%	7%	16%	69%

What About 20,000 ft² of Porous Pavement?

Will that meet the 95th% Criterion on Type C and D Soils?

20,000 SF

Site data	SF	Ac Ac
Total Site	128,370	2.95
Porous Paving	20,000	0.46
Roofs	35,710	0.82
Pavement ——————	72,660	1.67

Yes for A-C Soils

No For D Soils

Acre Feet Cubic Feet
95th% Treatment Volume 0.23 10,173

	Soil Type			
	Α	В	C	D
Area (Acres) Required for Infiltration in < 72 hrs	0.19	0.19	0.44	1.95
Enough pervious space on site to make infiltration		\		
feasible?	Yes	Yes	Yes	No
Infiltration BMP as a % Of Total Site	7%	7%	15%	66%

Findings

Conservative Assumptions:

- Rough estimate of runoff
- Assumes all water infiltrated in 72 hours
- No temporary ponding or storage in bioretention cell
- No correction for Redevelopment
- Homogeneous Soils

Retaining the 95th Percentile Storm

- Type A/B soils: requires ~5% of the total site dedicated to BMP
- Type C soils requires ~10% of the total site dedicated to BMP
- Type D soils requires ~40 % of the total site dedicated to BMP

95th Percentile Rain Event Variable

30

Central Coast Soils in Urban Areas

Hydrologic Soil Group	Percentage in Urban Areas
A	13%
В	37%
C	19%
D	27%

Retention is Challenging

- A combination of high rainfall and lowinfiltrative soils presents greatest challenge
- Pays to reduce imperviousness
- Technical infeasibility can be demonstrated
- Redevelopment 'handicap' lessens burden
- Historic lake and wetland adjustment

Next Steps and Schedule

- July 6: Public Comment Due
- Water Board staff redrafts
- August 22: Release Draft to public
- September 6: Water Board Meeting

If Water Board approves, 180 days later:

 March 13, 2013: Munis adopt Post-Construction Requirements

Draft Phase II Small MS4 General Permit

Central Coast Municipalities → Joint Effort Criteria instead of Draft Permit (E.12)

Exceptions

Schedule

- Current Enrollees Joint Effort Schedule
- New Enrollees 1 Year of Permit effective date

Draft Phase II Small MS4 General Permit

Draft Permit (Section E.12)

Draft Central Coast
Post- Construction
Requirements

Draft Phase II Small MS4 General Permit

Draft Permit Workshop
Central Coast Water Board Office
Monday, June 18, 2012
9 AM – 12 PM

